Ang modulative ari-arian ay ang isa na nagpapahintulot na magsagawa ng mga operasyon sa mga numero nang hindi binabago ang resulta ng pagkakapantay-pantay. Lalo na kapaki-pakinabang ito sa paglaon sa algebra, dahil ang pagdaragdag o pagdaragdag ng mga kadahilanan na hindi nagbabago ang resulta ay nagbibigay-daan sa pagpapagaan ng ilang mga equation.
Para sa karagdagan at pagbabawas, ang pagdaragdag ng zero ay hindi binabago ang resulta. Sa kaso ng pagdami at paghahati, ang pagpaparami o paghahati ng isa ay hindi rin nagbabago ng resulta. Halimbawa, ang pagdaragdag ng 5 hanggang 0 ay pa rin 5. Ang pagpaparami ng 1000 hanggang 1 ay 1000 pa rin.

Ang mga kadahilanan na zero para sa karagdagan at ang isa para sa pagdami ay modular para sa mga operasyong ito. Ang mga operasyon sa aritmetika ay may maraming mga pag-aari bilang karagdagan sa pag-aari ng modyulative, na nag-aambag sa paglutas ng mga problema sa matematika.
Mga Operasyong Aritmetika at ang Modulative Property
Ang mga operasyon sa aritmetika ay karagdagan, pagbabawas, pagpaparami, at paghahati. Magtatrabaho kami kasama ang hanay ng mga likas na numero.
Sum
Ang ari-arian na tinatawag na neutral na elemento ay nagbibigay-daan sa amin upang magdagdag ng isang addend nang hindi binabago ang resulta. Sinasabi sa amin na ang zero ay ang neutral na elemento ng kabuuan.
Tulad ng nabanggit, sinasabing modulus ng karagdagan at samakatuwid ang pangalan ng modyul na pag-aari.
Halimbawa:
(3 + 5) + 9 + 4 + 0 = 21
4 + 5 + 9 + 3 + 0 = 21
2 + 3 + 0 = 5
1000 + 8 + 0 = 1008
500 + 0 = 500
233 + 1 + 0 = 234
25000 + 0 = 25000
1623 + 2 + 0 = 1625
400 + 0 = 400
869 + 3 + 1 + 0 = 873
78 + 0 = 78
542 + 0 = 542
36750 + 0 = 36750
789 + 0 = 789
560 + 3 + 0 = 563
1500000 + 0 = 1500000
7500 + 0 = 7500
658 + 0 = 658
345 + 0 = 345
13562000 + 0 = 13562000
500000 + 0 = 500000
322 + 0 = 322
14600 + 0 = 14600
900000 + 0 = 900000
Ang modyul ng pag-aari ay totoo rin para sa buong mga numero:
(-3) +4+ (-5) = (-3) +4+ (-5) +0
(-33) + (- 1) = (-33) + (- 1) +0
-1 + 35 = -1 + 35 + 0
260000 + (- 12) = 260000 + (- 12) +0
(-500) +32 + (- 1) = (-500) +32 + (- 1) +0
1750000 + (- 250) = 1750000 + (- 250) +0
350000 + (- 580) + (- 2) = 350000 + (- 580) + (- 2) +0
(-78) + (- 56809) = (-78) + (- 56809) +0
8 + 5 + (- 58) = 8 + 5 + (- 58) +0
689 + 854 + (- 78900) = 689 + 854 + (- 78900) +0
1 + 2 + (- 6) + 7 = 1 + 2 + (- 6) + 7 + 0
At, sa parehong paraan, para sa mga nakapangangatwiran na mga numero:
2/5 + 3/4 = 2/5 + 3/4 + 0
5/8 + 4/7 = 5/8 + 4/7 + 0
½ + 1/4 + 2/5 = ½ + 1/4 + 2/5 + 0
1/3 + 1/2 = 1/3 + 1/2 + 0
7/8 + 1 = 7/8 + 1 + 0
3/8 + 5/8 = 3/8 + 5/8 + 0
7/9 + 2/5 + 1/2 = 7/9 + 2/5 + 1/2 + 0
3/7 + 12/133 = 3/7 + 12/133 + 0
6/8 + 2 + 3 = 6/8 + 2 + 3 + 0
233/135 + 85/9 = 233/135 + 85/9 + 0
9/8 + 1/3 + 7/2 = 9/8 + 1/3 + 9/8 + 0
1236/122 + 45/89 = 1236/122 + 45/89 + 0
24362/745 + 12000 = 24635/745 + 12000 + 0
Gayundin para sa hindi makatwiran:
e + √2 = e + √2 + 0
√78 + 1 = √78 + 1 + 0
√9 + √7 + √3 = √9 + √7 + √3 + 0
√7120 + e = √7120 + e + 0
√6 + √200 = √6 + √200 + 0
√56 + 1/4 = √56 + 1/4 + 0
√8 + √35 + √7 = √8 + √35 + √7 + 0
√742 + √3 + 800 = √742 + √3 + 800 + 0
V18 / 4 + √7 / 6 = √18 / 4 + √7 / 6 + 0
√3200 + √3 + √8 + √35 = √3200 + √3 + √8 + √35 + 0
√12 + e + √5 = √12 + e + √5 + 0
√30 / 12 + e / 2 = √30 / 12 + e / 2
√2500 + √365000 = √2500 + √365000 + 0
√170 + √13 + e + √79 = √170 + √13 + e + √79 + 0
At gayon din para sa lahat ng mga tunay.
2.15 + 3 = 2.15 + 3 + 0
144.12 + 19 + √3 = 144.12 + 19 + √3 + 0
788500 + 13.52 + 18.70 + 1/4 = 788500 + 13.52 + 18.70 + 1/4 + 0
3.14 + 200 + 1 = 3.14 + 200 + 1 + 0
2.4 + 1.2 + 300 = 2.4 + 1.2 + 300 + 0
√35 + 1/4 = √35 + 1/4 + 0
e + 1 = e + 1 + 0
7.32 + 12 + 1/2 = 7.32 + 12 + 1/2 + 0
200 + 500 + 25.12 = 200 + 500 + 25.12 + 0
1000000 + 540.32 + 1/3 = 1000000 + 540.32 + 1/3 +0
400 + 325.48 + 1.5 = 400 + 325 + 1.5 + 0
1200 + 3.5 = 1200 + 3.5 + 0
Pagbabawas
Ang paglalapat ng pag-aari ng modulative, bilang karagdagan, ang zero ay hindi binabago ang resulta ng pagbabawas:
4-3 = 4-3-0
8-0-5 = 8-5-0
800-1 = 800-1-0
1500-250-9 = 1500-250-9-0
Ito ay nasiyahan para sa mga integer:
-4-7 = -4-7-0
78-1 = 78-1-0
4500000-650000 = 4500000-650000-0
-45-60-6 = -45-60-6-0
-760-500 = -760-500-0
4750-877 = 4750-877-0
-356-200-4 = 356-200-4-0
45-40 = 45-40-0
58-879 = 58-879-0
360-60 = 360-60-0
1250000-1 = 1250000-1-0
3-2-98 = 3-2-98-0
10000-1000 = 10000-1000-0
745-232 = 745-232-0
3800-850-47 = 3800-850-47-0
Para sa mga rasyonal:
3 / 4-2 / 4 = 3 / 4-2 / 4-0
120 / 89-1 / 2 = 120 / 89-1 / 2-0
1 / 32-1 / 7-1 / 2 = 1 / 32-1 / 7-1 / 2-0
20 / 87-5 / 8 = 20 / 87-5 / 8-0
132 / 36-1 / 4-1 / 8 = 132 / 36-1 / 4-1 / 8
2 / 3-5 / 8 = 2 / 3-5 / 8-0
1 / 56-1 / 7-1 / 3 = 1 / 56-1 / 7-1 / 3-0
25 / 8-45 / 89 = 25 / 8-45 / 89 -0
3 / 4-5 / 8-6 / 74 = 3 / 4-5 / 8-6 / 74-0
5 / 8-1 / 8-2 / 3 = 5 / 8-1 / 8-2 / 3-0
1 / 120-1 / 200 = 1 / 120-1 / 200-0
1 / 5000-9 / 600-1 / 2 = 1 / 5000-9 / 600-1 / 2-0
3 / 7-3 / 4 = 3 / 7-3 / 4-0
Gayundin para sa hindi makatwiran:
Π-1 = Π-1-0
e-√2 = e-√2-0
√3-1 = √-1-0
√250-√9-√3 = √250-√9-√3-0
√85-√32 = √85-√32-0
√5-√92-√2500 = √5-√92-√2500
√180-12 = √180-12-0
√2-√3-√5-√120 = √2-√3-√5-120
15-√7-√32 = 15-√7-√32-0
V2 / √5-√2-1 = √2 / √5-√2-1-0
√18-3-√8-√52 = √18-3-√8-√52-0
√7-√12-√5 = √7-√12-√5-0
√5-e / 2 = √5-e / 2-0
√15-1 = √15-1-0
√2-√14-e = √2-√14-e-0
At, sa pangkalahatan, para sa mga tunay:
π -e = π-e-0
-12-1.5 = -12-1.5-0
100000-1 / 3-14.50 = 100000-1 / 3-14.50-0
300-25-1.3 = 300-25-1.3-0
4.5-2 = 4.5-2-0
-145-20 = -145-20-0
3.16-10-12 = 3.16-10-12-0
π-3 = π-3-0
π / 2- π / 4 = π / 2- π / 4-0
325.19-80 = 329.19-80-0
-54.32-10-78 = -54.32-10-78-0
-10000-120 = -10000-120-0
-58.4-6.52-1 = -58.4-6.52-1-0
-312.14-√2 = -312.14-√2-0
Pagpaparami
Ang pagpapatakbo sa matematika na ito ay mayroon ding neutral na elemento o modyulasyong pag-aari:
3x7x1 = 3 × 7
(5 × 4) x3 = (5 × 4) x3x1
Alin ang bilang 1, dahil hindi nito binabago ang resulta ng pagpaparami.
Totoo rin ito para sa mga integer:
2 × 3 = -2x3x1
14000 × 2 = 14000x2x1
256x12x33 = 256x14x33x1
1450x4x65 = 1450x4x65x1
12 × 3 = 12x3x1
500 × 2 = 500x2x1
652x65x32 = 652x65x32x1
100x2x32 = 100x2x32x1
10000 × 2 = 10000x2x1
4x5x3200 = 4x5x3200x1
50000x3x14 = 50000x3x14x1
25 × 2 = 25x2x1
250 × 36 = 250x36x1
1500000 × 2 = 1500000x2x1
478 × 5 = 478x5x1
Para sa mga rasyonal:
(2/3) x1 = 2/3
(1/4) x (2/3) = (1/4) x (2/3) x1
(3/8) x (5/8) = (3/8) x (5/8) x1
(12/89) x (1/2) = (12/89) x (1/2) x1
(3/8) x (7/8) x (6/7) = (3/8) x (7/8) x (6/7) x 1
(1/2) x (5/8) = (1/2) x (5/8) x 1
1 x (15/8) = 15/8
(4/96) x (1/5) x (1/7) = (4/96) x (1/5) x (1/7) x1
(1/8) x (1/79) = (1/8) x (1/79) x 1
(200/560) x (2/3) = (200/560) x 1
(9/8) x (5/6) = (9/8) x (5/6) x 1
Para sa hindi makatwiran:
ex 1 = e
√2 x √6 = √2 x √6 x1
√500 x 1 = √500
√12 x √32 x √3 = V√12 x √32 x √3 x 1
√8 x 1/2 = √8 x 1/2 x1
√320 x √5 x √9 x √23 = √320 x √5 √9 x √23 x1
√2 x 5/8 = √2 x5 / 8 x1
√32 x √5 / 2 = √32 + √5 / 2 x1
ex √2 = ex √2 x 1
(π / 2) x (3/4) = (π / 2) x (34) x 1
π x √3 = π x √3 x 1
At sa wakas para sa mga tunay:
2,718 × 1 = 2,718
-325 x (-2) = -325 x (-2) x1
10,000 x (25.21) = 10,000 x (25.21) x 1
-2012 x (-45.52) = -2012 x (-45.52) x 1
-13.50 x (-π / 2) = 13.50 x (-π / 2) x 1
-π x √250 = -π x √250 x 1
-√250 x (1/3) x (190) = -√250 x (1/3) x (190) x 1
- (√3 / 2) x (√7) = - (√3 / 2) x (√7) x 1
-12.50 x (400.53) = 12.50 x (400.53) x 1
1 x (-5638.12) = -5638.12
210.69 x 15.10 = 210.69 x 15.10 x 1
Dibisyon
Ang neutral na elemento ng paghahati ay pareho sa pagpaparami, ang bilang 1. Ang isang naibigay na dami na hinati ng 1 ay magbibigay ng parehong resulta:
34 ÷ 1 = 34
7 ÷ 1 = 7
200000 ÷ 1 = 200000
O kung ano ang parehong:
200000/1 = 200000
Totoo ito para sa bawat integer:
8/1 = 8
250/1 = 250
1000000/1 = 1000000
36/1 = 36
50000/1 = 50000
1/1 = 1
360/1 = 360
24/1 = 24
2500000/1 = 250000
365/1 = 365
At para sa bawat pangangatwiran:
(3/4) ÷ 1 = 3/4
(3/8) ÷ 1 = 3/8
(1/2) ÷ 1 = 1/2
(47/12) ÷ 1 = 47/12
(5/4) ÷ 1 = 5/4
(700/12) ÷ 1 = 700/12
(1/4) ÷ 1 = 1/4
(7/8) ÷ 1 = 7/8
Para sa bawat hindi makatwiran na numero:
1/1 = π
(π / 2) / 1 = π / 2
(√3 / 2) / 1 = √3 / 2
√120 / 1 = √120
√8500 / 1 = √8500
√12 / 1 = √12
(π / 4) / 1 = π / 4
At, sa pangkalahatan, para sa lahat ng mga tunay na numero:
3.14159 / 1 = 3.14159
-18/1 = -18
16.32 ÷ 1 = 16.32
-185000.23 ÷ 1 = -185000.23
-10000.40 ÷ 1 = -10000.40
156.30 ÷ 1 = 156.30
900000, 10 ÷ 1 = 900000.10
1,325 ÷ 1 = 1,325
Ang pag-aari ng modulative ay mahalaga sa mga operasyon ng algebra, dahil ang artifice ng pagpaparami o paghahati ng isang elemento ng algebraic na ang halaga ay 1, hindi binabago ang equation.
Gayunpaman, maaari mong gawing simple ang mga operasyon sa mga variable upang makakuha ng isang mas simpleng pagpapahayag at makamit ang paglutas ng mga equation sa isang mas madaling paraan.
Sa pangkalahatan, ang lahat ng mga katangian ng matematika ay kinakailangan para sa pag-aaral at pagbuo ng mga pang-agham na hypotheses at teorya.
Ang aming mundo ay puno ng mga kababalaghan na patuloy na sinusunod at pinag-aralan ng mga siyentipiko. Ang mga phenomena na ito ay ipinahayag gamit ang mga modelo ng matematika upang mapadali ang kanilang pagsusuri at kasunod na pag-unawa.
Sa ganitong paraan, ang mga pag-uugali sa hinaharap ay maaaring mahulaan, bukod sa iba pang mga aspeto, na nagdadala ng mahusay na mga benepisyo na nagpapabuti sa paraan ng pamumuhay ng mga tao.
Mga Sanggunian
- Kahulugan ng mga likas na numero. Nabawi mula sa: definicion.de.
- Dibisyon ng buong mga numero. Nabawi mula sa: vitutor.com.
- Halimbawa ng Modulative Property. Nabawi mula sa: halimbawalede.com.
- Ang mga likas na numero. Nabawi mula sa: gcfaprendelibre.org.
- Matematika 6. Nabawi mula sa: colombiaaprende.edu.co.
- Mga katangian ng matematika. Nabawi mula sa: wikis.engrade.com.
- Mga katangian ng pagpaparami: pakikipag-ugnay, commutative at distributive. Nabawi mula sa: portaleducativo.net.
- Mga katangian ng kabuuan. Nabawi mula sa: gcfacprendelibre.org.
